• 국가/지역 선택
  • 안녕하세요, 님! 내 정보
  • cart   
Why Laser Damage Testing is Critical for UV Laser Applications

Why Laser Damage Testing is Critical for UV Laser Applications

Laser Induced Damage Threshold (LIDT) defines the maximum quantity of laser radiation an optic can handle without damaging. It is one of the most important specifications to consider when integrating an optical component into a laser. To learn more about LIDT, please review the Understanding and Specifying LIDT of Laser Components application note.

UV Lasers

There are numerous advantages to using UV lasers as opposed to longer wavelengths such as infrared or visible light. In materials processing, infrared or visible lasers melt or vaporize material, which can hinder the creation of small, precise features and damage the structural integrity of the substrate. On the other hand, UV lasers process materials by directly breaking the atomic bonds in the substrate, which means that no peripheral heating is created around the beam spot. This reduces damage to material, allowing UV lasers to process thin and delicate materials much more effectively than visible and infrared lasers. The lack of peripheral heating also facilitates the creation of very precise cuts, holes, and other fine features. Additionally, laser spot size is directly proportional to wavelength. Thus, UV lasers have a higher spatial resolution than visible or infrared lasers and lead to even more precise processing of materials. 

However, the short wavelengths of UV lasers impact the LIDT of optics used with them. UV light is scattered more than visible or infrared light and also contains more energy, causing it to be absorbed by substrates. This UV absorption can even bleach component substrates. Similarly to how UV lasers cut materials by breaking atomic bonds, unwanted absorption of UV lasers can break the bonds in an optical component or coating, leading to failure. This reduces the component’s LIDT and an optic will usually have a lower LIDT at UV wavelengths than at visible or infrared wavelengths. When dealing with LIDT, it is important to remember that LIDT is directly related to wavelength.

UV Optics

UV optics must be carefully designed and manufactured to withstand the effects of UV damage. UV optics must contain a lower than usual amount of bubbles within them, have a homogeneous refractive index across the optic, and a limited birefringence, a specification which correlates the polarization of light with an optic’s refractive index. Additionally, in cases involving the use of UV lasers, UV optics should take into account prolonged periods of exposure. An example of a material used in UV applications would be Calcium Fluoride (CaF2), which has all of the aforementioned attributes required to withstand the effects of UV damage. However, in certain applications even CaF2 optics can be damaged. For instance, if you use CaF2 optics in high humidity environments they will perform poorly because they are highly hygroscopic, absorbing moisture easily. 

Therefore, when using a UV laser it is crucial to consider the Laser Damage Threshold. If an optic is selected that is not made for UV wavelengths, then the specification for LIDT may be misleading. For standard laser optic components, LIDT will rarely be given for wavelengths in the UV part of the spectrum. Rather, LIDT will be given for higher wavelengths. UV optics provide an LIDT that is tested specifically using UV wavelengths, ensuring more accurate LIDT specifications.

본 콘텐츠가 도움이 되었습니까?


EO의 어플리케이션 노트를 통해 기본 요소, 장착 방법, 작동 방식 및 부속품, 그리고 레이저 전반에 관해 알아보십시오.

Laser Damage Threshold(LDT)에 관해 배움으로써 보다 뛰어난 결과와 긴 제품 수명을 보장하고 laser optics에 대한 손상을 방지하십시오.

연필, 종이, 계산기는 잊으십시오. 7개의 기술 계산기를 통해 저희가 대신 계산해 드립니다. 

당사 엔지니어가 여러분의 다음 프로젝트를 위해 선정한 200건 이상의 자주 묻는 질문(FAQ)을 활용하십시오.

영업 & 기술 지원
혹은 지사별 연락처 확인
사용이 간편한
견적 도구
재고번호 입력 후 바로 시작