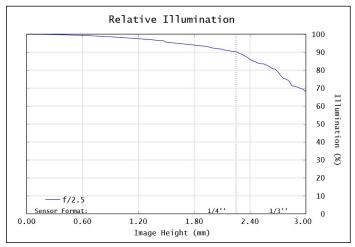
TECHSPEC[®] RUGGED BLUE SERIES M12 IMAGING LENSES #36-348 • 3mm • F/2.5

TECHSPEC® Rugged Blue Series M12 Lenses are Stability Ruggedized, protecting the lens from damage, while reducing pixel shift and maintaining optical pointing stability after shock and vibration. Each lens consists of several precision glass optics that are glued in place inside a compact, aluminum housing. Gluing the glass optics prevents even the smallest movements that often cause pixel shift.

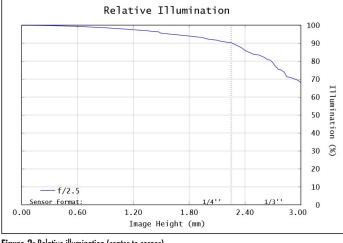

Focal Length:	3mm				
Working Distance ¹ :	100mm - ∞				
Max. Sensor Format:	1/3"				
Camera Mount:	M12 x 0.5 (S-Mount)				
Aperture (f/#):	f/2.5				
Distortion %2:	<34.05%				
Object Space NA ² :	0.005723				

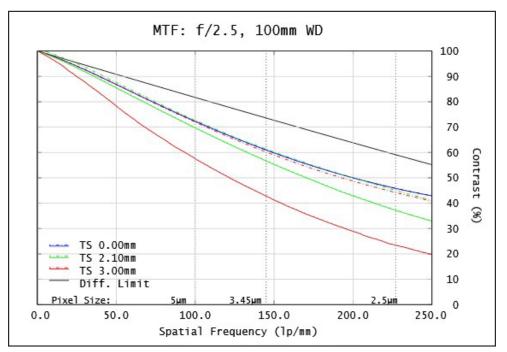
Magnification Range:	0 - 0.029X				
Туре:	Micro-Video Lens				
Length:	16.1mm				
Weight:	4g				
RoHS:	Compliant				
Stability Ruggedized:	<1 µm pixel shift at 50 G				
Number of Elements (Groups):	6 (5)				
AR Coating:	400-700nm MgF ₂				

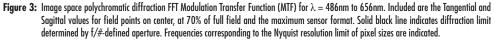
1. From front housing 2. At Minimum W.D.

At Minimum W.D. (100mm)										
Sensor Size	1/4"	1/3"	1/2.5"	1/2"	1/ _{1.8} "	2/3"]"	28.7mm	4/3"	
Field Of View ³ 14	41.3mm - 68.6°	211.1mm -91.3°	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

3. Horizontal FOV on Standard (4:3) sensor format. Min W.D.

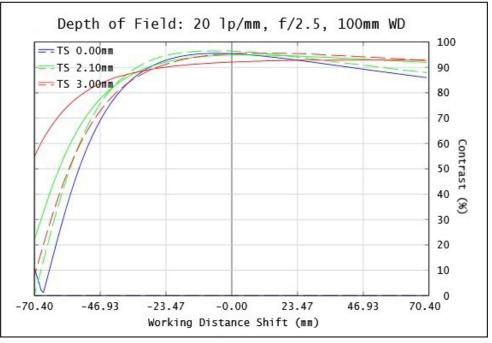
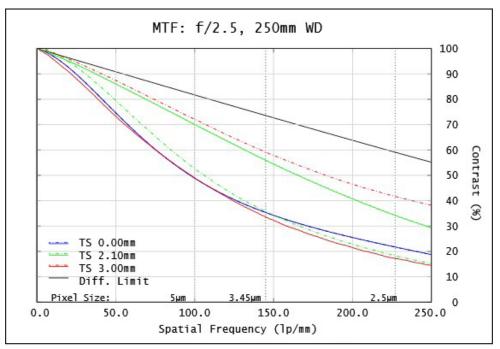


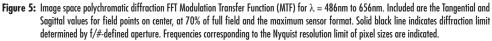

Figure 1: Distortion at the maximum sensor format. Positive values correspond to pincushion distortion, negative values correspond to barrel distortion.


Figure 2: Relative illumination (center to corner)

In both plots, field points corresponding to the image circle of common sensor formats are included. Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

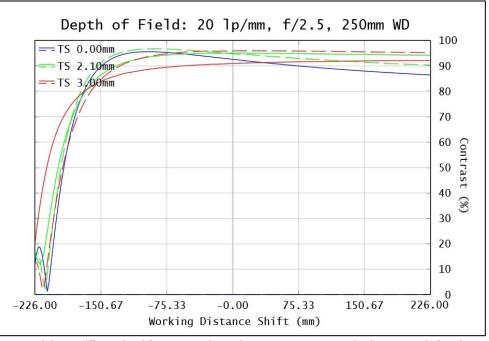
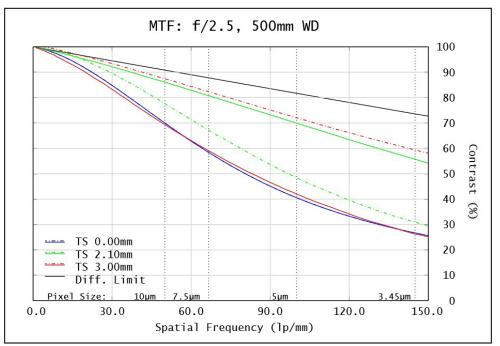
MTF & DOF: F/2.5 WD: 100mm (Minimum W.D.) HORIZONTAL FOV: 211mm

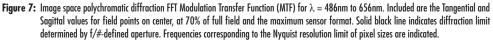




Figure 4: Polychromatic diffraction through-focus MTF at 20 linepairs/mm (image space). Contrast is plotted to two times the focus distance. Note object spatial frequency changes with working distance.

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

MTF & DOF: F/2.5 WD: 250mm HORIZONTAL FOV: 518mm


Figure 6: Polychromatic diffraction through-focus MTF at 20 linepairs/mm (image space). Contrast is plotted to two times the focus distance. Note object spatial frequency changes with working distance.

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

MTF & DOF: F/2.5 WD: 500mm HORIZONTAL FOV: 1030mm

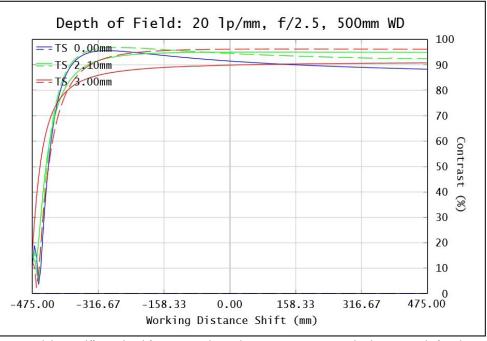


Figure 8: Polychromatic diffraction through-focus MTF at 20 linepairs/mm (image space). Contrast is plotted to two times the focus distance. Note object spatial frequency changes with working distance.

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

